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1. Introduction

In the deterministic theory of randomly mating infinite populations, in
which there is no differential selection or fertility, certain types of quad-
ratic transformations connecting one generation with the succeeding one
are susceptible of a complete mathematical treatment because of their
inherently simple structure. A quadratic transformation of an algebra is
one which involves quadratic functions of the coordinates. The technique
used to study these transformations was first introduced by Haldane [9]
in a genetical context in 1930 in connection with polyploids and is a
method of linearizing the transformations by extending the original vector
space sufficiently, using functions of the coordinates, until the transforma-
tion becomes linear. The process is described as linearization and was
studied in more detail, by Bennett [2] in connection with linked loci, and
in an algebraical context by Holgate [11]. Holgate's paper gives a useful
brief introduction to genetic algebras.

In this paper we study some questions which arise directly from
Holgate's paper and obtain some more explicit results.

We shall use the abbreviation GA for a genetic algebra as defined by
Schafer [17], for which we shall use the canonical form given by Gonshor
[8]. Let An denote the general GA of dimension n + 1 with canonical basis
c0,c1} ...,cn. We shall assume for simplicity that c0 is an idempotent
element. Algebras arising in practice usually possess idempotents;
Gonshor has given conditions for their existence [7]. Then multiplication
is defined by

n

where
\>oo = l> \jk = 0 for A; < j , Aoofc = 0 for k > 0,

AyA = 0 for (i,j) > 0 and k ^ max(i, j).

Xojj are called the train roots of An. Those of the Ayfc which are not zero by
definition will be called the constants, or structure constants of the
algebra. An is a commutative but usually non-associative algebra. It is
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a baric algebra [5]. The baric property implies that if a; is a general element
representing a population, it can be written uniquely as

X = CQ + X]Ci + #2^2 "H • • • "HXnCn,

where the coefficient of c0 is 1. We say that x is of unit weight, the weight
of an element in general being the coefficient of c0. A special train algebra
[5,7] can be defined as a GA in which all powers of the ideal with basis
{cx, ...,cn) (the nilideal) are ideals.

The plenary powers representing random mating between discrete
non-overlapping generations are x,x^,x[Si, ...,a;tn],..., where

afmi = cc[n-%[n-l]>

and derive from the successive application of the quadratic transformation
<p: x -> x2 which in general will be a quadratic function of xvx2, '--,xn.

Bn will denote the corresponding linearized vector space (with respect
to <p and x) which will have a basis defined by coordinates which are
monomial functions x1

klx2
ki-..xn

kn (where the kt are non-negative integers).
These will be called the linearizing (coordinate) functions. This technique
is subsequently defined and discussed very fully. The present problem is
two-fold:

(i) to find the dimension of Bn exactly, recursively, or asymptotically;
and

(ii) to describe precisely the monomials required or, equivalently, to
generate them explicitly.

We shall work in terms of a fixed canonical basis. However, as is well
known, such bases are not unique—although the train roots are invariant.
We shall show that the dimension of Bn is independent of the basis in An.
Haldane, working in a non-algebraic context, used the natural genetic
basis and it is intuitively evident that the dimension of Bn is an invariant
of An and the particular quadratic transformation under consideration.
However, the linearizing functions are not characterized uniquely. With
respect to a canonical basis in An they can be taken as monomials, but for
a general basis in An they will usually be homogeneous polynomial
functions in n variables.

The origins of this paper are interesting and have three contemporaneous
sources. Initially it was a remark by Holgate on finding an asymptotic
value for dim.Bn in the general case. Independently I was looking at the
genetic algebra of polyploids with several linked loci. It seemed to me that
the techniques necessary were an extension of the case for the genetic
algebra of diploids with several linked loci but treated in a rather different
way than had hitherto been attempted. This was by extending a tech-
nique of Etherington [5] and elucidating more fully the explicit nature
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of the plenary roots and in particular the question of multiplicities. This
in turn depended on a thorough and explicit understanding of the lineariza-
tion technique. We study in a subsequent paper the induced linear
transformation in Bn and the plenary roots of the algebra with respect to
quadratic transformations representing random mating.

2. Linearization
To illustrate some features of the linearization technique wHch Holgate

developed [11] let us consider the following example discussed by him.

EXAMPLE 1. Consider the algebra of tetraploidy A2.

'2

The quadratic transformation <p: x -»• x2 = co + x1c1 + {^x2 + \x^)c2 can be
represented as acting on the coordinates to give

\<p = 1, xx<p = x l t x2<p = %x2 + \x^.

The linearization of <p defines a set

M2 = {l,x1,xii,x2}

called the linearizing set of monomial (coordinate) functions with cardinahty
4, and we write

Card M2 = 4.

M2 then defines uniquely (up to isomorphism) an induced vector space B2 of
vectors

(U0>ttl>"ll>"2)>

where the u^s are coordinates with respect to a basis which we may
write as

co> ci> c i ® Ci, c2.

Clearly d im^ 2 = Card Mv B2 in this case is isomorphic to R4.
We shall call the map R: A2 -> B2,

X = CQ + ^i^j + X2C2 —> ( l , X j , Xj ,X2)y

which maps the plane of unit weight in A2 onto a variety V in B2, the
linearization map.
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<p may be defined by linearity on the whole vector space B2:

By examining the structure of <p in B2 we can, in particular, deduce its
action on the variety F, and by projecting back onto i 2 we can deduce
the action of <p.

The representation of <p as a matrix in this basis is given by the matrix A,

A =

It is sometimes convenient in studying <p to look at its action on the
basis vectors. This is given by the rows of A:

Co? = co> ci? = cv ci

1

0

0

0

0
1

0

0

0
0

1

0

0
0

o> ci? = cv ci

REMAUKS. 1. The linearizing functions are not unique. We could
define, for instance, the function t = x^2 — £x2. Then

= X2 + ¥>

= »!« - 4a:2 - f t = \t.

In order to obtain homogeneous linearizing functions we can take
x = X0CQ + X1C1 + X2C2 where xo=l, and then t = xt

2 — 4#2av This poly-
nomial function was the one used by Haldane working in the usual
genetic basis and taking

2
x = XQAA + xxAa + x2aa, ^xt = 1.

i=0

It is quite clear that in either basis we can always take our linearizing
functions as homogeneous polynomials by multiplying suitably by either
x0 = 1 or S^i = 1-

2. Clearly we are concerned with choosing a minimum number of
linearizing functions in order to obtain a linearization of the problem.
By a linearization we shall mean a minimal linearization.

3. It can sometimes happen that we can only obtain a canonical basis
over the complex numbers, Heuch [10], in which case we obtain a complex
induced vector space.

4. Linearization is very easily effected by working in a canonical basis.
The linearizing functions which arise are monomials
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We can call this a canonical linearization. Linearization in an arbitrary
basis is usually difficult to obtain and will yield, in general, linearizing
functions which are polynomials in R[xv x2,..., xn] or C[xvx2,..., xn], where
these denote polynomial rings over the real and complex numbers
respectively:

5. I t is sometimes helpful to look at the transformation <p as defining
a system of difference equations.

Writing xn = xnQc0 + xnlcx + xn2c2 to denote the population in the nth
generation, we have

xno9 = xn0 = ^00 ~ *>

l.l = xn\9 = xnl = ^01 >

xn+l,2 = xni9 = txn2 + txnl •

We can easily solve this explicitly by recursion. In this paper we are only
concerned with obtaining a canonical linearization and describing the
dimension of the induced vector space.

As Holgate [11] showed, we can, however, always take monomials to
linearize quadratic transformations x -> x2 in (Schafer) genetic algebras.

We shall now prove the main theorem of this section, namely, that the
dimension of Bn is independent of the basis of An (not necessarily the
canonical basis) and it is also independent of the linearizing functions and
a fortiori of the particular construction used to obtain them. Thus we
shall have shown the uniqueness of Bn (up to isomorphism) with respect
to the particular quadratic transformation x -> x2, where a; is a general
element of unit weight in An. However, the linearizing functions in the
natural genetic basis will not have a simple structure and can always be
taken as homogeneous polynomials in n+1 variables xo,x1,x2i ...,xn. In
the proof we shall have to use the result that non-singular transformations
of a basis in An induce non-singular transformations on the space
of homogeneous polynomial functions. Thus, for example, different
quadratic, cubic, quartic,... functions in x0, xv x2,..., xn are mapped
onto different quadratic, cubic, quartic,... functions respectively in
y0,1/1,1/2, ...>yn by a non-singular transformation. For this result we use
a property of Schldfiian matrices (also known as induced matrices).
Finally, we shall see that although the linearizing functions are not
unique, even in a particular basis, they are unique up to their degree.
By that I mean that the same number of linearizing functions of the same
degree are needed, whatever the basis in An, in order to linearize the
quadratic transformation.
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We remind the reader of some standard terminology using a simple
example. Consider a two-dimensional vector space with coordinates
(xvx2) and a non-singular linear transformation x = yA, giving new
coordinates (yv y2), so that

Xl = ail2/l + a2l2/2> X2 = al2^1 + a22^2-

The homogeneous quadratic form Q = ax^ + 2bxxx2 + cx2
2 will be trans-

formed into Q = a'y-f + 2b'y1y2 + c'y2
2, where

u
2 a n a 2 1 a21

2

We say tha t A induces a transformation A: (a, b, c) -> (a', b', c') defined by
the above matrix, which is a second-order Schldflian, Muir [15].

In general for a homogeneous form / of degree r,

where oci + ̂ i + ...+vi = r for all i, a linear transformation (x^ -* (y^
induces a linear transformation of the coefficients of the form, given by
(ty) ->• (a'i), which is given by a Schlaflian matrix of the r th order.

By a result of Schlafli [18], quoted by Muir in [15], this matrix has a

u v . v . u . ^ . v v^^^^x ^ I « I , " ^ V x V «. — . I. Hence if A is non-

singular, so is A.
This proves that different rth degree homogeneous forms are mapped

onto different rth degree forms under the induced transformation of a
change of basis in An. Hence the linearizing functions are unique up to
their degree and the number of homogeneous linearizing functions of a
given degree is an invariant of the algebra An with respect to a given
quadratic transformation. If one chooses a minimal set of linearizing
functions with respect to any basis then this will define uniquely the
dimension of Bn.

Thus we have the following result.

THEOREM 1: the first fundamental theorem of genetic algebra. The
induced vector space corresponding to a linearization of a quadratic trans-
formation is unique to within an isomorphism.

COROLLARY. The number of linearizing functions of a given degree is
independent of the basis in An.
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3. The general Schafer genetic algebra
We consider an arbitrary (Schafer) genetic algebra (GA) An with the

multiplication table defined as in § 1 and we shall assume that none of the
constants of the algebra is zero. It is easily seen that in this case An is a
special train algebra. This condition gives the most general genetic
algebra An of a particular dimension in the sense that any other genetic
algebra of the same dimension can only have at most the same number of
non-zero structure constants as An. Letting some of these be zero decreases
dimBn. Hence the general case gives us a maximal dimension for Bn for a
particular quadratic transformation and for a general element of unit
weight in a GA of dimension n.

Holgate [11] has given examples illustrating the linearization technique
for Ax and A2. We illustrate the case for AZ) and state the results for A±.

The algebra A3

0

1

2

3

co

c0 \

C l

1 1 c 1 + A012c2

A112c2 + Aj

+ 0̂13C3 \

c2

)22C2 + ^

A123C

A 2 2 3 c

l023C3

i

i

C3

A033C3

0

0

0

X — Co

xcp = x2 represents the quadratic transformation.

The transformation rp may be viewed as acting on the coordinates 1, xlt x2,
xz as follows:

x2<p =

x3<p = 0 2 3 a : 2

We define new variables yx = Xj2, y2 = xxx2, y3 = x2
2.

In the transition from x to xcp, x^ is replaced by x^.x^ip, so for the
induced transformation we define (x^)^ = x^.x^p. Hence we have

Vi? = 4Aoii22/i»
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We now need to define further variables in order to linearize these
equations:

2/4 = xi > 2/5 = xi > 2/6 = xi X2-
Then

The original quadratic transformation is now completely linearized.
Altogether we needed six monomials to linearize the transformation.
Hence B3 is a 10-dimensional vector space induced by the set Mz of
coordinate functions,

x x xx a

Similarly for Ax and A2 we have the corresponding spaces 2^ and B2

induced by Mx = {1, xx} and M2 = {1, xv x^, x2} respectively. For Ait JB4 is
36-dimensional and is induced by

X^ X t y X X f y X X X X X X # 1 ^ 1

/y* 3/y» />• 6/v« *Y* ^ 'V 2 iv /v» /v» /y« 2/y» 2 />• 3/v» /v« 4/v» /y« 7 /y* 5/y»
•^l *t/2> ^1 ^Z> "1 »"^S ' •*'1'*'2<*'3> •''I *°2 »"^1 3 ' "''I 2 ' ^ l > "^l **'2»

/y« 3/>« 2 /y* 2/y* />« Ŷ* 2/y. /y* /y* 3 />• 4/y* />• 8 ŷ* 6/v* <>• 4/y* 2 /y* 2/y* 3 ŷ» 4 /y* 3 1
•^l •*/2 » ^ l >*'2"l'3» '*2 "^3' '*'l*t/2 ' "^1 ^ S ' "H ' 1 ^ 2 ' 1 2 ' ^ l 2 ' 2 > *°2 J •

It is convenient to define a polynomial function corresponding to each
of these spaces:

P2{l,xvx2) =

P^(l,x1,x2,x3,xi) = ({(l+xjz + x

By expanding these polynomials (from the outer brackets) one can see
that the constituent monomials are given by the sets Mx, M2, M3, Jf4

respectively. Thus we have produced explicitly a generating polynomial
for the coordinate functions. We may call such a polynomial P a generator
for M. By abuse of language we may say that P generates the vector
space B. This polynomial plays a key role in obtaining the properties of Bn.

We shall write Pn for Pn{\,xx, ...,xn).

THEOREM 2. The linearizing set Mn of coordinate functions for the quadratic
transformation <p: x -> x2, where x is a general element of unit weight in An,
is generated by the polynomial Pn defined recursively by Pn = Pn^ + xni for
7 i = l , 2 , . . . , P 0 = l .
5388.3.40 X



354 VICTOR M. ABRAHAM

Proof. The theorem is clearly true for An, with n ^ 4.
Assume the theorem is true for An_x and suppose that Bn_x is induced

by the set of monomials

obtained by expanding Pn_x and relabelling the monomials by the variables
yi and zi listed in a special (not quite uniquely determined) order as
follows. The y/s are either the linear or quadratic variables occurring in
the transformation equations of An_x; they will be called primary variables.
They are listed in the order in which they occur in the transformation
equations. Thus yx = xx, y2 = x2, y3 = xx

2, y± = x3, y5 = xxx2,..., and we
exclude any repetitions of such variables. The z/s are further monomials
generated by the quadratic primary variables in order to linearize <p.
Thus zx = xx

3 is generated by <p acting on y5 = xxx%. By abuse of language
we shall say that xxx2 generates xx

3. If zi does not occur amongst any of the
variables to its left, namely amongst the previously listed y's or z's, it is
included in the listing; otherwise it is excluded. This avoids any repeti-
tions. Similarly each zt may generate further z's. These are listed in the
ordering as they are generated, apart from repetitions. Thus any zi will be
generated by some y or z to the left of it. We call the z's secondary variables.

Consider An; xn<p contains a term in xn_x
2 since all the A's are assumed

to be non-zero. Now xn_x<p is a linear combination of all the primary
variables of Mn_x for the same reason, and

Hence the induced transformation on xn_x
2 will define further variables

which are all the possible pairwise products (including squares) of the
primary variables of Mn_1.

Suppose that the primary variables of Mn_x are {l,ylty%,---,yp}- Hence
y^j are contained in Mn for al\i,j = l,...,p.

We must show that all the other pairwise products (including squares)
of the variables (primary and secondary) of Mn_x are included in Mn.
There are two cases to consider.

Case 1: the variables y^ e Mn for yt, zi e Mn_1 for all i,j. We use
induction onj. Consider ytzv zx is generated by y5, that is, y5<p = axz+ ...
and 2/̂ 5 € Mn,

Hence the induced transformation on y$b defines a variable y$.x. This
therefore is included in Mn.
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Now we make the inductive hypothesis that ytZj E Mn for fixed i and all
j < k. Consider y#,k. By the ordering zk is generated by either a y
variable or a z variable to the left of it in the listing. If the former case
holds

- for some j ,

The induced transformation on y^j will define y^. Hence yizk belongs to
Mn. On the other hand, if zk is generated by Zp for j < k, y^ e Mn by the
inductive hypothesis and

Hence the induced transformation on y^ defines the variable y$,k.
Therefore y^ belongs to Mn.

We conclude that yfa e Mn for all j , fixed i. Since yi was arbitrary, this
is true for all * and j, including y0 = 1.

Case 2: the variables z{zj e Mn for all zi} Zj in Mn_1. By the ordering zi is
generated from zv or y^ and ẑ  from Zy or y^». This gives four possibilities:

(a) zi is generated from yv and zi from y$*;
(b) zi is generated from zv (i

f < i) and zi from zr (j' < j);
(c) zi is generated from y^ and zi from Zy (j' < j)\
(d) zi is generated from z^ (i' < i) and zj from y^.
We examine each sub-case in turn.
Sub-case (a). We must show that z^ e Mn. Since yv and y^ are

primary, yryr e Mn,

{Vi'Vi')? = (««< + • • •)(£«* + •••)•
Hence z^- 6 Jfn.

Sub-case (b). Here we use double induction on i and J. For i =j = 1,
z^ E Mn since

n

Assume that zvZy e Mn for all i' < i, j ' < j . We shall show that this
implies z^- e Mn and hence by the second principle of induction (applied
twice) zfy e Mn for all z^Zj in JH7t_1 whenever Sub-case (b) is true. Since
z^Zy E Mn by the inductive hypothesis

{zi.zr)<p = {azi + ...)(fizj + . . . )

defines zfa. Hence z^ E Mn.
Sub-case (c). This follows easily by using Case 1, since y^Zy e Mn.

Hence
{yi'Zr)p

which implies z ^ G Mn.
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Sub-case (d). The proof is similar to (c).
We have therefore shown that all pairwise products (including squares)

of the variables (primary and secondary) of Mn_x are included in Mn.
Finally, we must show that the other primary variables in xn<p

(excluding xn_x
2) w ^ occur in Pn-

2. This is obvious since any such
variable XjXp with i < n, j < n, will occur as a product of linear primary
variables in Mn_v The secondary variables they generate will clearly be

in Pn-i
2-

Hence the linearized space of A n is given precisely by all the monomials
in

P — P 24-r
xn~ x n-1 ^ "Si*

Another characterization of the monomial functions is given by a
linear diophantine inequality. This can be converted to a linear dio-
phantine equality. Such equalities are important in the theory of parti-
tions. We can also represent the monomials using weight functions.

If xi has weight w(x^) = 2i~1, for i = 1,2,..., we define the weight of
z1

a*xa
a*...xn°* as SJU^wfo).

The use of weight functions is simply a combinatorial device for
investigating dimi?^. There is no connection with the concept of baric
weight.

PROPOSITION 1. The monomials required to linearize the quadratic
transformation x -» x2

} where x is a general element of unit weight in An, are
all those monomials of weight less than or equal to 2n~x. Equivalently
x^x£*...xr?

n is such a monomial if ava2, ...,an are integral non-negative
solutions of the inequality

ax + 2a2 + 22a3 + 23a4 + ... + 2n~1an ^ 271"1, forn^ 1.

Proof. Clearly the proposition is true for Av Consider

{x^x^: a1 + 2ai ^ 2, a{ ^ 0, ai e N}.

The solutions of the inequality are {(0,0), (0,1), (1,0), (2,0)} which when
substituted in xx

axx2
a* define the set M2. Hence it is true for Az.

Assume the truth of the proposition for An_x. Now Pn = Pn_1
2 + xn and

by the inductive hypothesis P n - 1 is the set of monomials m such that
w(m) < 2n~2 where m = xx

ai.. .xn_^ln-ixn_x
an-'i. Hence Pn consists of

monomials m^ and xn, where mit mj are in Mn_x. Now

w^ray) = wimj + wimj) < 2n"2.2 = 2n~1,

w{xn) = 2n-*.

Hence Pn consists of all the monomials m in xv ...,xn such that
w(m) < 2n~x, which establishes the truth of the proposition.
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If m - x1
aix2

a*...xn
a«} then

w{m) = a1 + 2a2 + 22a3 +. . . + 2n~xan ^ 2""1, for n ^ 1.

Hence ax,...,an are non-negative integral solutions of this diophantine
inequality.

PROPOSITION 2. The number of monomials in Mn is precisely the number
of integral, non-negative solutions of the linear diophantine equation

ax + 2a2 + 22a3 + ... + 2nan+1 = 2n.

Proof. See the next section.

We can also define generating functions for the set Mn and for
un = dimi?n = Card jfcfn. Define

O(a;; t) = {1 + xj + x^t2 + x^t* + .. .)(1 + x2t* +

xj8 + . . . ) . . .

where these are formal power series. Then clearly <£(a;; t) is a form of
generating function for Mn in the sense that Mn will consist of all the
coefficients of powers of t1 such that i ^ 2n~1. We may obtain a proper
generating function for Mn by considering (\—t)-xQ>(x',t). Then the
coefficient of tf2""1 in this expansion will give precisely the set Mn.

Similarly, by considering

(l-O-^U; t) = (I-*)"1 ft (i-O"1.

we will have a generating function for un. Here un is the coefficient of <2""1.
We have thus given various alternative characterizations of Mn and its

cardinality, and hence of Bn and its dimension.

4. The dimension of the linearized space
A general problem in the theory of partitions is to partition a given

number n with respect to some given quantities bltb2,...,bm. This is
equivalent to solving the linear diophantine equation

VA+2/A+ - +yJ>m = n (1)
for integral, non-negative values yv y2,..., ym. The number of solutions of
this equation is called the denumerant D(m,n) (with respect to the base
which is the fixed set of summands blf b2,...,bm). Sylvester was the first to
investigate this problem and gave some very deep results using complex
variable techniques. Several other writers, mentioned by Dickson in
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[4, Chapter 3], have given some remarkable explicit formulae for the
number of solutions of (1). However, they are usually impossible to
evaluate for large m and n, and are of little practical value. E. T. Bell [1]
has given a modern treatment of this problem. Formulae for D(m, n) for
special cases and small m and n can be obtained. A brief survey is given by
Riordan in [16].

I t is well known that if we define a generating function for D(m, n) by

then

We define *»(') {(! '
D{m, 0) =

D(0,n) =

1 (m =

0 (» =

0,1,

1,2,

L a*)
2,...),
3,...).

Proof of Proposition 2. This is based on a recursive relation derived by
Blom and Froberg [3, p. 63].

Consider

We have

- 2) + t2n

Equating coefficients of fin in both sides, we obtain
D{n+ 1, 2n) = D{n, O) + D(n, 1)+D{n, 2) + ... +D(n, 2"-1),

where D(m,n) is with respect to the set of summands 1,2,22, ...,2m~1.
The left-hand side is the number of solutions of the equality

ax + 2a2 + 22a3 + . . . + 2"an+1 = 2»,

and the right-hand side is the number of solutions in the inequality of
Proposition 1. This completes the proof.

Our interest centres on a very special case of this problem when the base
consists of powers of 2, so that

61 = 1, 62 = 2, &3 = 22, ..., bm = 2^~\

and n = 2™-1.
Thus, from Proposition 2, dimi?n = D(n+ l,2n). In this case a more

complete and easier recurrence solution can be given than in the general
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problem. A complete analysis of this case is given by Blom and Froberg
[3]. We shall also use a result of Mahler's [13] to give an asymptotic value
for un = dim Bn.

A number of recursive procedures are possible for computing un,
depending on which method is used for characterizing Bn.

Method 1: using the polynomials Pn. The number of different monomials
in the expansion of Pn will be denoted by un, and the number of different
monomials in Pn

m (m = 0,1,2,...) will be denoted by unm.
We can easily derive a difference equation for unm by expanding

p m _ tip 2_i_;r\2_i_r \m

and forming the corresponding equation for un+lm. Collecting terms
together we eventually obtain

un+l,m ~ lun-l,4m

+ ... + m[un_1A + un_1>2] + m + 1 for n > 2.

One easily finds

ui,m = m + l, u2iTn = (m + I)2, u3>m = 1 + £[4m3 + 12m2 + 1 Ira].

Further explicit solutions for small values of n are possible in terms of
Bernoulli polynomials. Using the recursion formula one can compute un.

For the general algebra An (where the A's are non-zero) we obtain the
following table:

A.Q A.^ A-2 .0.3 A± A.5 A.Q A.'j

un 1 2 4 10 36 202 1828 27337

Method 2: using a diophantine equality. An alternative procedure is to
use the characterization of Bn by the diophantine equality in Proposition 2.
Blom and Froberg [3] have given explicit details of the recursion pro-
cedure based on Bell's formula [1]. We give their result. Our sequence is

wto-i = cmi + 1» form = 1,2,...,
where

cm+i,i= 1),

CU = 0 (j > i),

cm0 = 1 (all m),
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and a{j is given by either

2aij + aij-i (* >0,j> 0, «oo =

or

They calculate first a table of the coefficients a{j and then derive cmi.
Using this method we easily find u7 = 27337, whereas the calculation is
more protracted by the first method.

Mahler [13], in the course of a more general problem, investigated
similar diophantine equations but with a base in terms of an arbitrary
integer a ^ 2. Using his result, we obtain the asymptotic formula

(log 2»)
2 log 2

= n2log<]2 (as n -> oo).

5. A special case
Here we examine a class of (Schafer) genetic algebras An, with the usual

canonical basis c0,cv.. . icn, which require only quadratic functions of the
coordinates xv...,xn to linearize quadratic transformations denoting
random mating. This is related to a question raised by Moran [14,
Chapter 2].

PROPOSITION 3. If An is a Schafer genetic algebra with idempotent c0 such
thatcfj = \jncn,for 1 ^i,j < n, \jn ^ 0, that is, the result of multiplication
in the nil-ideal is a multiple of cn, then An is an algebra which requires only
quadratic functions to linearize a quadratic transformation <p: x -> x2, where
x is a general element of unit weight in An.

Proof. The multiplication tables for A% and Az are:

0

1

2

c0

C0 '

Cl

W1A12C2

A 1 1 2 c 2

c2

A022C2

0

0

0

1

2

3

°0 °1
c0 *

A113C3

c2

*

A123C3

A 2 2 3 c 3

C3

*

0

0

0

By direct computation we find that the corresponding linear spaces Bn

are induced by the sets of coordinate functions

Jfa = {l,a;lfa:a,a;1
2},

ikZ3 = 11 ,^ , x2, x3, x1x2, x2 ,#! ),



LINEARIZING QUADRATIC TRANSFORMATIONS 361

respectively, and in each case dim Bn (n = 2,3) is the maximum dimension
for such a transformation of An\ if any of the A^ = 0 (1 ^ i, j < n) dimi?n

would decrease.
Consider An with the above multiplication table. Now xn<p includes the

maximum number of quadratic terms which can occur and the induced
transformations on these will not introduce any other functions because
of the linearity of X&, for i < n.

REMARK. Any number of train roots may be zero. This will not alter Bn.
The reason is that we are restricted to quadratic functions only.

If we extend the concept of a Bernstein algebra [12] we can define an
nth-order Bernstein algebra as one in which equilibrium is reached after
exactly n generations of panmixia:

It is seen that the algebras in this section are all second-order Bernstein
algebras, x[4i = xl3i, when all the train roots apart from 1 are zero.

The Bernstein algebras discussed in [12] would correspond to first-order
Bernstein algebras.

The space Bn is generated by

and

The following table gives the dimensions of the induced vector spaces for
the algebras An:

AQ JX-^ A.% JL§ Ji.£ JL§ AQ Ay

6imBn 1 2 4 7 11 16 22 29

6. Conclusions
Holgate's Theorem 2 [11] is an important theorem as it represents a

major step forward in constructing a definitive and fundamental theory of
genetic algebras, as we show in a subsequent paper. However, it is
incomplete since the eigenvalues of the induced linear transformation
explicitly depend on the constructed monomials which are not unique and
are basis dependent, and the minimality of Bn is only shown with respect
to a particular canonical basis. In this paper we prove that dimi?n is an
invariant of An with respect to <p: x -* x2; it then follows that the eigen-
values of <p are also invariant from the theory in a subsequent paper where
linearization is shown to be unique (up to similarity).
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By considering the most general case of a genetic algebra we easily
obtain some elegant generating polynomials in closed form. This is not
generally the case for simpler algebras where many of the structure
constants are zero. Methods of defining generating functions for Mn and
un are described. The use of diophantine equalities enables us to examine
the asymptotic behaviour of un.

The (Schafer) genetic algebras requiring only quadratic functions to
linearize them have very simple structures. Again it is more convenient
to consider the most general of such algebras.

Although we have assumed the existence of an idempotent (for
simplicity), it is easily seen that this assumption can be dispensed with.
Our results are clearly valid over the real and complex number fields.

Further, we see that the concept of linearization is a fundamental idea
as the class of algebras in which quadratic transformations may be
linearized is strictly larger than the class of Schafer algebras. Further, it is
a technique which is clearly applicable in a wider context than in genetics
and to more general non-linear transformations.
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